
1

Comprehensive Report

Acunetix Threat Level 3

One or more high-severity type vulnerabilities have been
discovered by the scanner. A malicious user can exploit these
vulnerabilities and compromise the backend database and/or
deface your website.

HIGH

Scan Detail

Target https://www.anorc.org

Scan Type Full Scan

Start Time Sep 4, 2022, 8:31:02 AM GMT+4

Scan Duration 40 minutes

Requests 98704

Average Response Time 2ms

Maximum Response Time 9025ms

High Medium Low Informational

4 6 4 4

Severity Vulnerabilities Instances

High 4 4
Medium 6 6
Low 4 4
Informational 4 4
Total 18 18

https://www.anorc.org/

2

Informational

Instances
Microso� IIS version disclosure 1

Subresource Integrity (SRI) not implemented 1

TLS/SSL (EC)DHE Key Reuse 1

Others 1

Low Severity

Instances
Clickjacking: CSP frame-ancestors missing 1

Cookies with missing, inconsistent or contrad… 1

Cookies without HttpOnly flag set 1

Others 1

Medium Severity

Instances
Application error messages 1

TLS 1.1 enabled 1

TLS/SSL LOGJAM attack 1

Others 3

High Severity

Instances
Cross site scripting 1

Microso� IIS tilde directory enumeration 1

SQL injection 1

Others 1

3

Impacts

SEVERITY IMPACT

 High 1 Cross site scripting

 High 1 Microso� IIS tilde directory enumeration

 High 1 SQL injection

 High 1 TLS 1.0 enabled

 Medium 1 Application error messages

 Medium 1 TLS 1.1 enabled

 Medium 1 TLS/SSL LOGJAM attack

 Medium 1 TLS/SSL Sweet32 attack

 Medium 1 TLS/SSL Weak Cipher Suites

 Medium 1 URL redirection

 Low 1 Clickjacking: CSP frame-ancestors missing

 Low 1 Cookies with missing, inconsistent or contradictory properties

 Low 1 Cookies without HttpOnly flag set

 Low 1 Cookies without Secure flag set

 Informational 1 Microso� IIS version disclosure

 Informational 1 Subresource Integrity (SRI) not implemented

 Informational 1 TLS/SSL (EC)DHE Key Reuse

 Informational 1 Web Application Firewall detected

4

Cross site scripting

Cross-site Scripting (XSS) refers to client-side code injection attack wherein an attacker can execute
malicious scripts into a legitimate website or web application. XSS occurs when a web application makes
use of unvalidated or unencoded user input within the output it generates.

Impact
Malicious JavaScript has access to all the same objects as the rest of the web page, including access to
cookies and local storage, which are o�en used to store session tokens. If an attacker can obtain a user's
session cookie, they can then impersonate that user.

Furthermore, JavaScript can read and make arbitrary modifications to the contents of a page being
displayed to a user. Therefore, XSS in conjunction with some clever social engineering opens up a lot of
possibilities for an attacker.

https://www.anorc.org/fa/
URI was set to "onmouseover='qTsi(91432)'bad="
The input is reflected inside a tag parameter between double quotes.

Request
GET /fa/news2/4?"onmouseover='qTsi(91432)'bad=" HTTP/1.1

Referer: https://www.anorc.org/

Cookie: ASPSESSIONIDQEAQCTQR=KBNPCCPBPNGDAEEEIJFJEDLP; theme=1; Lang=fa

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip,deflate,br

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/92.0.4512.0 Safari/537.36

Host: www.anorc.org

Connection: Keep-alive

Recommendation

Apply context-dependent encoding and/or validation to user input rendered on a page

Description

In order for a Cross-site scripting (XSS) attack to take place, an attacker does not directly target a victim.
Instead, an attacker exploits a vulnerability in a web application visited by a victim, where the web
application is used to deliver the malicious JavaScript. The victim's browser is not able to distinguish
between malicious and legitimate JavaScript, and therefore, executes the attacker's malicious payload.

Since cross-site scripting (XSS) is user input which is interpreted as code. In order to prevent XSS, secure
input handling is necessary. The two fundamental methods of handling untrusted user input are encoding

5

and validation.

Encoding - Escapes user input so that browsers interpret it as data, not as code
Validation - Filters user input so that browsers interpret it as code without malicious commands

Encoding and validation are two di�erent techniques to preventing cross-site scripting (XSS). Deciding
which should be used highly depends on the context within which the untrusted user input is being
inserted.

The following are two examples of the most common cross-site scripting (XSS) contexts.
<!-- HTML element -->

<div>userInput</div>

<!-- HTML attribute -->

<input value="userInput">

The method for preventing cross-site (XSS) scripting in the two examples above is di�erent. In the first
example, where user input is inserted in an HTML element, HTML encoding is the correct way to prevent
XSS. However, in the second example, where user input is inserted in an HTML attribute, validation (in this
case, filtering out ' and ")is the appropriate prevention method.
<!-- Application code -->

<input value="userInput">

<!-- Malicious string -->

"><script>...</script><input value="

<!-- Resulting code -->

<input value=""><script>...</script><input value="">

In most of the time, encoding should be performed whenever user input is included in a page, however, as
with the above example, in some cases, encoding has to be replaced by or complemented with validation.

It's important to remember that secure input handling has to take into account which context of a page the
user input is inserted into.

References

Cross-site Scripting (XSS) Attack - Acunetix
https://www.acunetix.com/websitesecurity/cross-site-scripting/

Types of XSS - Acunetix
https://www.acunetix.com/websitesecurity/xss/

XSS Filter Evasion Cheat Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Excess XSS, a comprehensive tutorial on cross-site scripting
https://excess-xss.com/

Cross site scripting

https://www.acunetix.com/websitesecurity/cross-site-scripting/
https://www.acunetix.com/websitesecurity/xss/
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://excess-xss.com/
https://en.wikipedia.org/wiki/Cross-site_scripting

6

https://en.wikipedia.org/wiki/Cross-site_scripting

Microso� IIS tilde directory enumeration

It is possible to detect short names of files and directories which have an 8.3 file naming scheme equivalent
in Windows by using some vectors in several versions of Microso� IIS. For instance, it is possible to detect all
short-names of ".aspx" files as they have 4 letters in their extensions. This can be a major issue especially for
the .Net websites which are vulnerable to direct URL access as an attacker can find important files and
folders that they are not normally visible.

Impact
Possible sensitive information disclosure.

https://www.anorc.org/

Request
GET /userfiles/images/menue//*~1*/a.aspx?aspxerrorpath=/ HTTP/1.1

Cookie: ASPSESSIONIDQEAQCTQR=KBNPCCPBPNGDAEEEIJFJEDLP; theme=1; Lang=fa

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip,deflate,br

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/92.0.4512.0 Safari/537.36

Host: www.anorc.org

Connection: Keep-alive

Recommendation

Consult the "Prevention Technique(s)" section from Soroush Dalili's paper on this subject. A link to this paper is
listed in the Web references section below.

References

Windows Short (8.3) Filenames - A Security Nightmare?
https://www.acunetix.com/blog/web-security-zone/windows-short-8-3-filenames-web-security-problem/

Detectify KB: Microso� IIS Tilde Vulnerability
https://web.archive.org/web/20150921104258/https://support.detectify.com/customer/portal/articles/1711520-
microso�-iis-tilde-vulnerability

Microso� IIS Shortname Scanner PoC
https://github.com/irsdl/iis-shortname-scanner/

Microso� IIS tilde character “~” Vulnerability/Feature – Short File/Folder Name Disclosure

https://www.acunetix.com/blog/web-security-zone/windows-short-8-3-filenames-web-security-problem/
https://web.archive.org/web/20150921104258/https://support.detectify.com/customer/portal/articles/1711520-microsoft-iis-tilde-vulnerability
https://github.com/irsdl/iis-shortname-scanner/
https://soroush.secproject.com/blog/2012/06/microsoft-iis-tilde-character-vulnerabilityfeature-short-filefolder-name-disclosure/

7

https://soroush.secproject.com/blog/2012/06/microso�-iis-tilde-character-vulnerabilityfeature-short-filefolder-
name-disclosure/

IIS Short File Name Disclosure is back! Is your server vulnerable?
https://soroush.secproject.com/blog/2014/08/iis-short-file-name-disclosure-is-back-is-your-server-vulnerable/

SQL injection

SQL injection (SQLi) refers to an injection attack wherein an attacker can execute malicious SQL statements
that control a web application's database server.

Impact
An attacker can use SQL injection to bypass a web application's authentication and authorization
mechanisms and retrieve the contents of an entire database. SQLi can also be used to add, modify and
delete records in a database, a�ecting data integrity. Under the right circumstances, SQLi can also be used
by an attacker to execute OS commands, which may then be used to escalate an attack even further.

https://www.anorc.org/fa/pages/28
HTTP Header input Referer was set to @@fPh1T

Error message found:

Microsoft OLE DB Provider for ODBC Drivers

Request
GET /fa/pages/28 HTTP/1.1

Referer: @@fPh1T

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/92.0.4512.0 Safari/537.36

Cookie: theme=1; Lang=fa

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip,deflate,br

Host: www.anorc.org

Connection: Keep-alive

Recommendation

Use parameterized queries when dealing with SQL queries that contain user input. Parameterized queries
allow the database to understand which parts of the SQL query should be considered as user input,
therefore solving SQL injection.

https://soroush.secproject.com/blog/2014/08/iis-short-file-name-disclosure-is-back-is-your-server-vulnerable/

8

Description

In order for an SQL injection attack to take place, the vulnerable website needs to directly include user input
within an SQL statement. An attacker can then insert a payload that will be included as part of the SQL
query and run against the database server.

The following server-side pseudo-code is used to authenticate users to the web application.
Define POST variables

uname = request.POST['username']

passwd = request.POST['password']

SQL query vulnerable to SQLi

sql = "SELECT id FROM users WHERE username='" + uname + "' AND password='" + passwd +

"'"

Execute the SQL statement

database.execute(sql)

The above script is a simple example of authenticating a user with a username and a password against a
database with a table named users, and a username and password column.

The above script is vulnerable to SQL injection because an attacker could submit malicious input in such a
way that would alter the SQL statement being executed by the database server.

A simple example of an SQL injection payload could be something as simple as setting the password field to
password' OR 1=1.

This would result in the following SQL query being run against the database server.
SELECT id FROM users WHERE username='username' AND password='password' OR 1=1'

An attacker can also comment out the rest of the SQL statement to control the execution of the SQL query
further.
-- MySQL, MSSQL, Oracle, PostgreSQL, SQLite

' OR '1'='1' --

' OR '1'='1' /*

-- MySQL

' OR '1'='1' #

-- Access (using null characters)

' OR '1'='1' %00

' OR '1'='1' %16

Once the query executes, the result is returned to the application to be processed, resulting in an
authentication bypass. In the event of authentication bypass being possible, the application will most likely
log the attacker in with the first account from the query result — the first account in a database is usually of
an administrative user.

What's the worst an attacker can do with SQL?

SQL is a programming language designed for managing data stored in an RDBMS, therefore SQL can be used
to access, modify and delete data. Furthermore, in specific cases, an RDBMS could also run commands on

9

the operating system from an SQL statement.

Keeping the above in mind, when considering the following, it's easier to understand how lucrative a
successful SQL injection attack can be for an attacker.

An attacker can use SQL injection to bypass authentication or even impersonate specific users.
One of SQL's primary functions is to select data based on a query and output the result of that query. An
SQL injection vulnerability could allow the complete disclosure of data residing on a database server.
Since web applications use SQL to alter data within a database, an attacker could use SQL injection to alter
data stored in a database. Altering data a�ects data integrity and could cause repudiation issues, for
instance, issues such as voiding transactions, altering balances and other records.
SQL is used to delete records from a database. An attacker could use an SQL injection vulnerability to delete
data from a database. Even if an appropriate backup strategy is employed, deletion of data could a�ect an
application's availability until the database is restored.
Some database servers are configured (intentional or otherwise) to allow arbitrary execution of operating
system commands on the database server. Given the right conditions, an attacker could use SQL injection
as the initial vector in an attack of an internal network that sits behind a firewall.

Preventing SQL injection using parameterized queries

SQL injection is one of the most widely spread and most damaging web application vulnerabilities.
Fortunately, both the programming languages, as well as the RDBMSs themselves have evolved to provide
web application developers with a way to safely query the database — parameterized SQL queries.

Parameterized queries are simple to write and understand while forcing a developer to define the entire
SQL statement before hand, using placeholders for the actual variables within that statement. A developer
would then pass in each parameter to the query a�er the SQL statement is defined, allowing the database
to be able to distinguish between the SQL command and data inputted by a user. If SQL commands are
inputted by an attacker, the parameterized query would treat the input as a string as opposed to an SQL
command.

Application developers should avoid sanitizing their input by means of escaping or removing special
characters (several encoding tricks an attacker could leverage to bypass such protections) and stick to using
parameterized queries in order to avoid SQL injection vulnerabilities.

References

SQL Injection (SQLi) - Acunetix
https://www.acunetix.com/websitesecurity/sql-injection/

Types of SQL Injection (SQLi) - Acunetix
https://www.acunetix.com/websitesecurity/sql-injection2/

Prevent SQL injection vulnerabilities in PHP applications and fix them - Acunetix
https://www.acunetix.com/blog/articles/prevent-sql-injection-vulnerabilities-in-php-applications/

SQL Injection - OWASP

https://www.acunetix.com/websitesecurity/sql-injection/
https://www.acunetix.com/websitesecurity/sql-injection2/
https://www.acunetix.com/blog/articles/prevent-sql-injection-vulnerabilities-in-php-applications/
https://www.owasp.org/index.php/SQL_Injection

10

https://www.owasp.org/index.php/SQL_Injection

Bobby Tables: A guide to preventing SQL injection
https://bobby-tables.com/

SQL Injection Cheet Sheets - Pentestmonkey
http://pentestmonkey.net/category/cheat-sheet/sql-injection

TLS 1.0 enabled

The web server supports encryption through TLS 1.0, which was formally deprecated in March 2021 as a
result of inherent security issues. In addition, TLS 1.0 is not considered to be "strong cryptography" as
defined and required by the PCI Data Security Standard 3.2(.1) when used to protect sensitive information
transferred to or from web sites. According to PCI, "30 June 2018 is the deadline for disabling SSL/early TLS
and implementing a more secure encryption protocol – TLS 1.1 or higher (TLS v1.2 is strongly encouraged) in
order to meet the PCI Data Security Standard (PCI DSS) for safeguarding payment data.

Impact
An attacker may be able to exploit this problem to conduct man-in-the-middle attacks and decrypt
communications between the a�ected service and clients.

https://www.anorc.org/ Confidence: 100%

The SSL server (port: 443) encrypts tra�ic using TLSv1.0.

Recommendation

It is recommended to disable TLS 1.0 and replace it with TLS 1.2 or higher.

References

RFC 8996: Deprecating TLS 1.0 and TLS 1.1
https://tools.ietf.org/html/rfc8996

Are You Ready for 30 June 2018? Saying Goodbye to SSL/early TLS
https://blog.pcisecuritystandards.org/are-you-ready-for-30-june-2018-sayin-goodbye-to-ssl-early-tls

PCI 3.1 and TLS 1.2 (Cloudflare Support)
https://support.cloudflare.com/hc/en-us/articles/205043158-PCI-3-1-and-TLS-1-2

https://www.owasp.org/index.php/SQL_Injection
https://bobby-tables.com/
http://pentestmonkey.net/category/cheat-sheet/sql-injection
https://tools.ietf.org/html/rfc8996
https://blog.pcisecuritystandards.org/are-you-ready-for-30-june-2018-sayin-goodbye-to-ssl-early-tls
https://support.cloudflare.com/hc/en-us/articles/205043158-PCI-3-1-and-TLS-1-2

11

Application error messages

This alert requires manual confirmation

Acunetix found one or more error/warning messages. Application error or warning messages may expose
sensitive information about an application's internal workings to an attacker.
These messages may also contain the location of the file that produced an unhandled exception.
Consult the 'Attack details' section for more information about the a�ected page(s).

Impact
Error messages may disclose sensitive information which can be used to escalate attacks.

https://www.anorc.org/
Application error messages:

https://www.anorc.org/Shop/Ajax_functionsShop.asp
Microso� OLE DB Provider for ODBC Drivers

https://www.anorc.org/Shop/Ajax_functionsShop.asp
ODBC SQL Server Driver

https://www.anorc.org/Shop/Ajax_functionsShop.asp
ODBC Driver

https://www.anorc.org/Shop/Ajax_functionsShop.asp
ODBC SQL

https://www.anorc.org/Shop/Ajax_functionsShop.asp
ODBC SQL Server

https://www.anorc.org/Shop/Ajax_functionsShop.asp
Invalid column name

https://www.anorc.org/inc/Ajax_functions.asp
Microso� VBScript runtime error '800a000d'

https://www.anorc.org/inc/submit.asp
Microso� VBScript runtime error '800a000d'

Request
POST /Shop/Ajax_functionsShop.asp?p=LikePro HTTP/1.1

Host: www.anorc.org

12

Content-Length: 36

accept: */*

accept-language: en-US

content-type: application/x-www-form-urlencoded; charset=UTF-8

origin: https://www.anorc.org

cookie: ASPSESSIONIDQEAQCTQR=LBNPCCPBGBGJJCDIOMFLCGFJ; theme=1; Lang=fa

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

Sec-Fetch-Dest: empty

Accept-Encoding: gzip,deflate,br

Connection: keep-alive

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/92.0.4512.0 Safari/537.36

ProID=productIDVal&UserID=userIDVal&

Recommendation

Verify that these page(s) are disclosing error or warning messages and properly configure the application to
log errors to a file instead of displaying the error to the user.

Description

While information disclosure vulnerabilities are not directly exploitable by an attacker, they may help an
attacker to learn about system specific information. The following is a list of some of the information an
attacker may be able to obtain from application error disclosure.

Internal IP addresses
Secrets (passwords, keys, tokens...)
Operating system distributions
So�ware version numbers
Missing security patches
Application stack traces
SQL statements
Location of sensitive files (backups, temporary files...)
Location of sensitive resources (databases, caches, code repositories...)

References

PHP Runtime Configuration
https://www.php.net/manual/en/errorfunc.configuration.php#ini.display-errors

Improper Error Handling
https://www.owasp.org/index.php/Improper_Error_Handling

TLS 1.1 enabled

https://www.php.net/manual/en/errorfunc.configuration.php#ini.display-errors
https://www.owasp.org/index.php/Improper_Error_Handling

13

The web server supports encryption through TLS 1.1, which was formally deprecated in March 2021 as a
result of inherent security issues. When aiming for Payment Card Industry (PCI) Data Security Standard
(DSS) compliance, it is recommended to use TLS 1.2 or higher instead. According to PCI, "30 June 2018 is the
deadline for disabling SSL/early TLS and implementing a more secure encryption protocol – TLS 1.1 or
higher (TLS v1.2 is strongly encouraged) in order to meet the PCI Data Security Standard (PCI DSS) for
safeguarding payment data.

Impact
An attacker may be able to exploit this problem to conduct man-in-the-middle attacks and decrypt
communications between the a�ected service and clients.

https://www.anorc.org/ Confidence: 100%

The SSL server (port: 443) encrypts tra�ic using TLSv1.1.

Recommendation

It is recommended to disable TLS 1.1 and replace it with TLS 1.2 or higher.

References

RFC 8996: Deprecating TLS 1.0 and TLS 1.1
https://tools.ietf.org/html/rfc8996

Are You Ready for 30 June 2018? Saying Goodbye to SSL/early TLS
https://blog.pcisecuritystandards.org/are-you-ready-for-30-june-2018-sayin-goodbye-to-ssl-early-tls

PCI 3.1 and TLS 1.2 (Cloudflare Support)
https://support.cloudflare.com/hc/en-us/articles/205043158-PCI-3-1-and-TLS-1-2

TLS/SSL LOGJAM attack

The LOGJAM attack is a SSL/TLS vulnerability that allows attackers to intercept HTTPS connections between
vulnerable clients and servers and force them to use 'export-grade' cryptography, which can then be
decrypted or altered. This vulnerability alert is issued when a web site is found to support DH(E) export
cipher suites, or non-export DHE cipher suites using either DH primes smaller than 1024 bits, or commonly
used DH standard primes up to 1024 bits.

Impact
An attacker may intercept HTTPS connections between vulnerable clients and servers.

https://tools.ietf.org/html/rfc8996
https://blog.pcisecuritystandards.org/are-you-ready-for-30-june-2018-sayin-goodbye-to-ssl-early-tls
https://support.cloudflare.com/hc/en-us/articles/205043158-PCI-3-1-and-TLS-1-2

14

https://www.anorc.org/
Weak DH Key Parameters (p < 1024 bits, or <= 1024 bits for common primes):

TLS1.0, TLS_DHE_RSA_WITH_AES_256_CBC_SHA: 1024 bits (common prime)
TLS1.0, TLS_DHE_RSA_WITH_AES_128_CBC_SHA: 1024 bits (common prime)
TLS1.1, TLS_DHE_RSA_WITH_AES_256_CBC_SHA: 1024 bits (common prime)
TLS1.1, TLS_DHE_RSA_WITH_AES_128_CBC_SHA: 1024 bits (common prime)
TLS1.2, TLS_DHE_RSA_WITH_AES_256_GCM_SHA384: 1024 bits (common prime)
TLS1.2, TLS_DHE_RSA_WITH_AES_128_GCM_SHA256: 1024 bits (common prime)
TLS1.2, TLS_DHE_RSA_WITH_AES_256_CBC_SHA: 1024 bits (common prime)
TLS1.2, TLS_DHE_RSA_WITH_AES_128_CBC_SHA: 1024 bits (common prime)

Recommendation

Reconfigure the a�ected SSL/TLS server to disable support for any DHE_EXPORT suites, for DH primes
smaller than 1024 bits, and for DH standard primes up to 1024 bits. Refer to the "Guide to Deploying Di�ie-
Hellman for TLS" for further guidance on how to configure a�ected systems accordingly.

References

Weak Di�ie-Hellman and the Logjam Attack
https://weakdh.org/

Guide to Deploying Di�ie-Hellman for TLS
https://weakdh.org/sysadmin.html

TLS/SSL Sweet32 attack

The Sweet32 attack is a SSL/TLS vulnerability that allows attackers to compromise HTTPS connections using
64-bit block ciphers.

Impact
An attacker may intercept HTTPS connections between vulnerable clients and servers.

https://www.anorc.org/
Cipher suites susceptible to Sweet32 attack (TLS1.0 on port 443):

TLS_RSA_WITH_3DES_EDE_CBC_SHA

https://weakdh.org/
https://weakdh.org/sysadmin.html

15

Cipher suites susceptible to Sweet32 attack (TLS1.1 on port 443):

TLS_RSA_WITH_3DES_EDE_CBC_SHA

Cipher suites susceptible to Sweet32 attack (TLS1.2 on port 443):

TLS_RSA_WITH_3DES_EDE_CBC_SHA

Recommendation

Reconfigure the a�ected SSL/TLS server to disable support for obsolete 64-bit block ciphers.

References

Sweet32: Birthday attacks on 64-bit block ciphers in TLS and OpenVPN
https://sweet32.info/

TLS/SSL Weak Cipher Suites

The remote host supports TLS/SSL cipher suites with weak or insecure properties.

Impact

https://www.anorc.org/
Weak TLS/SSL Cipher Suites: (o�ered via TLS1.0 on port 443):

TLS_RSA_WITH_3DES_EDE_CBC_SHA (Medium strength encryption algorithm (3DES).)
TLS_RSA_WITH_RC4_128_SHA (Weak encryption algorithm (RC4).)
TLS_RSA_WITH_RC4_128_MD5 (Weak encryption algorithm (RC4). MD5-HMAC.)

Weak TLS/SSL Cipher Suites: (o�ered via TLS1.1 on port 443):

TLS_RSA_WITH_3DES_EDE_CBC_SHA (Medium strength encryption algorithm (3DES).)
TLS_RSA_WITH_RC4_128_SHA (Weak encryption algorithm (RC4).)
TLS_RSA_WITH_RC4_128_MD5 (Weak encryption algorithm (RC4). MD5-HMAC.)

https://sweet32.info/

16

Weak TLS/SSL Cipher Suites: (o�ered via TLS1.2 on port 443):

TLS_RSA_WITH_3DES_EDE_CBC_SHA (Medium strength encryption algorithm (3DES).)
TLS_RSA_WITH_RC4_128_SHA (Weak encryption algorithm (RC4).)
TLS_RSA_WITH_RC4_128_MD5 (Weak encryption algorithm (RC4). MD5-HMAC.)

Recommendation

Reconfigure the a�ected application to avoid use of weak cipher suites.

References

OWASP: TLS Cipher String Cheat Sheet
https://cheatsheetseries.owasp.org/cheatsheets/TLS_Cipher_String_Cheat_Sheet.html

OWASP: Transport Layer Protection Cheat Sheet
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html

Mozilla: TLS Cipher Suite Recommendations
https://wiki.mozilla.org/Security/Server_Side_TLS

SSLlabs: SSL and TLS Deployment Best Practices
https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices

URL redirection

This script is possibly vulnerable to URL redirection attacks.

URL redirection is sometimes used as a part of phishing attacks that confuse visitors about which web site
they are visiting.

Impact
A remote attacker can redirect users from your website to a specified URL. This problem may assist an
attacker to conduct phishing attacks, trojan distribution, spammers.

https://www.anorc.org/inc/submit.asp
URL encoded GET input l was set to /xfs.bxss.me

Request

https://cheatsheetseries.owasp.org/cheatsheets/TLS_Cipher_String_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://wiki.mozilla.org/Security/Server_Side_TLS
https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices

17

POST /inc/submit.asp?id=86&l=/xfs.bxss.me&module=2&p=comment HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Cookie: ASPSESSIONIDQEAQCTQR=KBNPCCPBPNGDAEEEIJFJEDLP; theme=1; Lang=fa

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip,deflate,br

Content-Length: 314

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/92.0.4512.0 Safari/537.36

Host: www.anorc.org

Connection: Keep-alive

CAPTCHA_Postback=true&email=%D8%A7%DB%8C%D9%85%DB%8C%D9%84%20%D8%B4%D9%85%D8%A7%20(%D9%86%D9%85%D8%A7%

DB%8C%D8%B4%20%D8%AF%D8%A7%D8%AF%D9%87%20%D9%86%D9%85%DB%8C%D8%B4%D9%88%D8%AF)&fname=%D9%86%D8%A7%D9%8

5%20%D8%B4%D9%85%D8%A7&securityCode=94102&txtComment=555&website=%D8%B3%D8%A7%DB%8C%D8%AA%20%D8%B4%D9%

85%D8%A7

Recommendation

Your script should properly sanitize user input.

References

Unvalidated Redirects and Forwards Cheat Sheet
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html

HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
https://packetstormsecurity.com/papers/general/whitepaper_httpresponse.pdf

Clickjacking: CSP frame-ancestors missing

Clickjacking (User Interface redress attack, UI redress attack, UI redressing) is a malicious technique of
tricking a Web user into clicking on something di�erent from what the user perceives they are clicking on,
thus potentially revealing confidential information or taking control of their computer while clicking on
seemingly innocuous web pages.

The server didn't return a frame-ancestors directive in the Content-Security-Policy header which means
that this website could be at risk of a clickjacking attack. The frame-ancestors directives can be used to
indicate whether or not a browser should be allowed to render a page inside a frame. Sites can use this to
avoid clickjacking attacks, by ensuring that their content is not embedded into other sites.

Impact
The impact depends on the a�ected web application.

https://www.anorc.org/

https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://packetstormsecurity.com/papers/general/whitepaper_httpresponse.pdf

18

Paths without CSP frame-ancestors:

https://www.anorc.org/fa/index.asp

https://www.anorc.org/fa/news2/6

https://www.anorc.org/fa/newsview/106

https://www.anorc.org/fa/pages/105

https://www.anorc.org/fa/newsview/107

https://www.anorc.org/fa/newsview/108

https://www.anorc.org/fa/pages/28

https://www.anorc.org/fa/newsview/109

https://www.anorc.org/fa/pages/29

https://www.anorc.org/fa/newsview/113

https://www.anorc.org/fa/pages/30

https://www.anorc.org/fa/newsview/114

https://www.anorc.org/fa/pages/36

https://www.anorc.org/fa/newsview/115

https://www.anorc.org/fa/pages/40

https://www.anorc.org/fa/newsview/119

https://www.anorc.org/fa/pages/41

https://www.anorc.org/fa/newsview/121

https://www.anorc.org/fa/pages/42

https://www.anorc.org/fa/newsview/122

https://www.anorc.org/fa/pages/43

Request

19

GET /fa/index.asp?p=search&search=the HTTP/1.1

Referer: https://www.anorc.org/

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip,deflate,br

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/92.0.4512.0 Safari/537.36

Host: www.anorc.org

Connection: Keep-alive

Recommendation

Configure your web server to include a CSP header with frame-ancestors directive and an X-Frame-Options
header. Consult Web references for more information about the possible values for this header.

References

OWASP Clickjacking
https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html

CSP: frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors

The X-Frame-Options response header
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

Cookies with missing, inconsistent or contradictory
properties

At least one of the following cookies properties causes the cookie to be invalid or incompatible with either a
di�erent property of the same cookie, of with the environment the cookie is being used in. Although this is
not a vulnerability in itself, it will likely lead to unexpected behavior by the application, which in turn may
cause secondary security issues.

Impact
Cookies will not be stored, or submitted, by web browsers.

https://www.anorc.org/ Verified

List of cookies with missing, inconsistent or contradictory properties:

https://www.anorc.org/fa/index.asp

Cookie was set with:

https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

20

Set-Cookie: theme=1; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/index.asp

Cookie was set with:

Set-Cookie: Lang=fa; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/index.asp

Cookie was set with:

Set-Cookie: ASPSESSIONIDQEAQCTQR=KBNPCCPBPNGDAEEEIJFJEDLP; secure; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/inc/submit.asp

Cookie was set with:

Set-Cookie: ASPSESSIONIDQEAQCTQR=OBNPCCPBFMOIDBOEMNPDNPDE; secure; path=/

This cookie has the following issues:

21

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/news2/6

Cookie was set with:

Set-Cookie: Lang=fa; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/news2/6

Cookie was set with:

Set-Cookie: theme=1; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/newsview/106

Cookie was set with:

Set-Cookie: Lang=fa; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

22

https://www.anorc.org/fa/newsview/106

Cookie was set with:

Set-Cookie: theme=1; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/pages/105

Cookie was set with:

Set-Cookie: Lang=fa; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/pages/105

Cookie was set with:

Set-Cookie: theme=1; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/newsview/107

Cookie was set with:

23

Set-Cookie: Lang=fa; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/newsview/107

Cookie was set with:

Set-Cookie: theme=1; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/newsview/108

Cookie was set with:

Set-Cookie: Lang=fa; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/newsview/108

Cookie was set with:

Set-Cookie: theme=1; path=/

This cookie has the following issues:

24

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/pages/28

Cookie was set with:

Set-Cookie: Lang=fa; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/pages/28

Cookie was set with:

Set-Cookie: theme=1; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/newsview/109

Cookie was set with:

Set-Cookie: Lang=fa; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

25

https://www.anorc.org/fa/newsview/109

Cookie was set with:

Set-Cookie: theme=1; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/pages/29

Cookie was set with:

Set-Cookie: Lang=fa; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/pages/29

Cookie was set with:

Set-Cookie: theme=1; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

https://www.anorc.org/fa/newsview/113

Cookie was set with:

26

Set-Cookie: Lang=fa; path=/

This cookie has the following issues:

- Cookie without SameSite attribute.

When cookies lack the SameSite attribute, Web browsers may apply different and

sometimes unexpected defaults. It is therefore recommended to add a SameSite

attribute with an appropriate value of either "Strict", "Lax", or "None".

Request
GET /fa/index.asp?p=search&search=the HTTP/1.1

Referer: https://www.anorc.org/

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip,deflate,br

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/92.0.4512.0 Safari/537.36

Host: www.anorc.org

Connection: Keep-alive

Recommendation

Ensure that the cookies configuration complies with the applicable standards.

References

MDN | Set-Cookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

Securing cookies with cookie prefixes
https://www.sjoerdlangkemper.nl/2017/02/09/cookie-prefixes/

Cookies: HTTP State Management Mechanism
https://tools.ietf.org/html/dra�-ietf-httpbis-rfc6265bis-05

SameSite Updates - The Chromium Projects
https://www.chromium.org/updates/same-site

dra�-west-first-party-cookies-07: Same-site Cookies
https://tools.ietf.org/html/dra�-west-first-party-cookies-07

Cookies without HttpOnly flag set

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://www.sjoerdlangkemper.nl/2017/02/09/cookie-prefixes/
https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-05
https://www.chromium.org/updates/same-site
https://tools.ietf.org/html/draft-west-first-party-cookies-07

27

One or more cookies don't have the HttpOnly flag set. When a cookie is set with the HttpOnly flag, it
instructs the browser that the cookie can only be accessed by the server and not by client-side scripts. This
is an important security protection for session cookies.

Impact
Cookies can be accessed by client-side scripts.

https://www.anorc.org/ Verified

Cookies without HttpOnly flag set:

https://www.anorc.org/fa/index.asp

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/index.asp

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/index.asp

Set-Cookie: ASPSESSIONIDQEAQCTQR=KBNPCCPBPNGDAEEEIJFJEDLP; secure; path=/

https://www.anorc.org/inc/submit.asp

Set-Cookie: ASPSESSIONIDQEAQCTQR=OBNPCCPBFMOIDBOEMNPDNPDE; secure; path=/

https://www.anorc.org/fa/news2/6

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/news2/6

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/newsview/106

28

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/newsview/106

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/pages/105

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/pages/105

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/newsview/107

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/newsview/107

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/newsview/108

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/newsview/108

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/pages/28

Set-Cookie: Lang=fa; path=/

29

https://www.anorc.org/fa/pages/28

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/newsview/109

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/newsview/109

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/pages/29

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/pages/29

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/newsview/113

Set-Cookie: Lang=fa; path=/

Request
GET /fa/index.asp?p=search&search=the HTTP/1.1

Referer: https://www.anorc.org/

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip,deflate,br

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/92.0.4512.0 Safari/537.36

Host: www.anorc.org

Connection: Keep-alive

Recommendation

If possible, you should set the HttpOnly flag for these cookies.

30

Cookies without Secure flag set

One or more cookies does not have the Secure flag set. When a cookie is set with the Secure flag, it instructs
the browser that the cookie can only be accessed over secure SSL/TLS channels. This is an important
security protection for session cookies.

Impact
Cookies could be sent over unencrypted channels.

https://www.anorc.org/ Verified

Cookies without Secure flag set:

https://www.anorc.org/fa/index.asp

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/index.asp

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/news2/6

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/news2/6

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/newsview/106

Set-Cookie: Lang=fa; path=/

31

https://www.anorc.org/fa/newsview/106

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/pages/105

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/pages/105

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/newsview/107

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/newsview/107

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/newsview/108

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/newsview/108

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/pages/28

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/pages/28

32

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/newsview/109

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/newsview/109

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/pages/29

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/pages/29

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/newsview/113

Set-Cookie: Lang=fa; path=/

https://www.anorc.org/fa/newsview/113

Set-Cookie: theme=1; path=/

https://www.anorc.org/fa/pages/30

Set-Cookie: Lang=fa; path=/

Request
GET /fa/index.asp?p=search&search=the HTTP/1.1

Referer: https://www.anorc.org/

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

33

Accept-Encoding: gzip,deflate,br

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/92.0.4512.0 Safari/537.36

Host: www.anorc.org

Connection: Keep-alive

Recommendation

If possible, you should set the Secure flag for these cookies.

Microso� IIS version disclosure

The HTTP responses returned by this web application include a header named Server. The value of this
header includes the version of Microso� IIS server.

Impact
The HTTP header may disclose sensitive information. This information can be used to launch further
attacks.

https://www.anorc.org/
Version information found:

Microsoft-IIS/8.5

Request
GET /|~.aspx HTTP/1.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip,deflate,br

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/92.0.4512.0 Safari/537.36

Host: www.anorc.org

Connection: Keep-alive

Recommendation

Microso� IIS should be configured to remove unwanted HTTP response headers from the response. Consult
web references for more information.

References

Remove Unwanted HTTP Response Headers

https://blogs.msdn.microsoft.com/varunm/2013/04/23/remove-unwanted-http-response-headers/

34

https://blogs.msdn.microso�.com/varunm/2013/04/23/remove-unwanted-http-response-headers/

Subresource Integrity (SRI) not implemented

Subresource Integrity (SRI) is a security feature that enables browsers to verify that third-party resources
they fetch (for example, from a CDN) are delivered without unexpected manipulation. It works by allowing
developers to provide a cryptographic hash that a fetched file must match.

Third-party resources (such as scripts and stylesheets) can be manipulated. An attacker that has access or
has hacked the hosting CDN can manipulate or replace the files. SRI allows developers to specify a base64-
encoded cryptographic hash of the resource to be loaded. The integrity attribute containing the hash is then
added to the <script> HTML element tag. The integrity string consists of a base64-encoded hash, followed by
a prefix that depends on the hash algorithm. This prefix can either be sha256, sha384 or sha512.

The script loaded from the external URL specified in the Details section doesn't implement Subresource
Integrity (SRI). It's recommended to implement Subresource Integrity (SRI) for all the scripts loaded from
external hosts.

Impact
An attacker that has access or has hacked the hosting CDN can manipulate or replace the files.

https://www.anorc.org/fa/index.asp
Pages where SRI is not implemented:

https://www.anorc.org/fa/index.asp
Script SRC: https://www.oil-price.net/TINY_CHART/gen.php?lang=en¢er

Request
GET /fa/index.asp?p=search&search=the HTTP/1.1

Referer: https://www.anorc.org/

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip,deflate,br

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/92.0.4512.0 Safari/537.36

Host: www.anorc.org

Connection: Keep-alive

Recommendation

35

Use the SRI Hash Generator link (from the References section) to generate a <script> element that
implements Subresource Integrity (SRI).

For example, you can use the following <script> element to tell a browser that before executing the
https://example.com/example-framework.js script, the browser must first compare the script to the
expected hash, and verify that there's a match.

<script src="https://example.com/example-framework.js"

integrity="sha384-oqVuAfXRKap7fdgcCY5uykM6+R9GqQ8K/uxy9rx7HNQlGYl1kPzQho1wx4JwY8wC"

crossorigin="anonymous"></script>

References

Subresource Integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity

SRI Hash Generator
https://www.srihash.org/

TLS/SSL (EC)DHE Key Reuse

The remote host reuses Di�ie-Hellman Ephemeral public server keys with (EC)DHE cipher suites.

Impact

https://www.anorc.org/
Di�ie-Hellman Public Key Reuse:

DHE public server key reuse: 97 d2 cd a1 3b 7a 1a 74 c8 92 bd 28 25 47 42 5b 90 80 e0 4a bf 07 5c fd 0b 45 31 56 51 f7 7a 3f
9d c0 ee 86 2f a6 a8 fe 6f 1a d8 56 f9 a2 8b 68 5a f7 4c e6 07 92 31 39 3b 64 9a 36 4f a7 28 � b6 5b 1a f1 7c 0a 78 46 15 f9 56 dc
b6 16 69 0a f6 11 16 9b 6f 52 bf 80 74 02 25 df d8 7b 6c 26 c0 cb 26 30 ca b5 22 8e 3a ec f1 29 8f 0d 71 ef a9 59 b6 71 95 98 40
d4 7a 8e 8a 4a 4d 04 93 25 (with TLS_DHE_RSA_WITH_AES_256_CBC_SHA)

ECDHE public server key reuse: 04 7a f0 46 7d 0e 32 7e f1 93 2c 3c 01 45 8d 8f 3c 84 40 3c 0b 66 3d 5e 0d 21 34 1b 41 37 46
6a a9 bf 27 47 1a 1e 8d 7b 2a 4c 0c 09 de 49 c1 63 2a 34 6b 59 60 ec eb 11 90 b1 37 36 90 5b 4e 2d 7b (with
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA)

Recommendation

Reconfigure the a�ected application to always generate new keys when using tmp_dh/tmp_ecdh
parameters.

https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://www.srihash.org/

36

References

Raccoon Attack
https://raccoon-attack.com/

Raccoon Attack (Technical Paper, PDF)
https://raccoon-attack.com/RacoonAttack.pdf

Logjam Attack
https://weakdh.org/

Logjam Attack (Technical Paper, PDF)
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf

List of SSL OP Flags (see: SSL_OP_SINGLE_DH_USE, SSL_OP_SINGLE_ECDH_USE)
https://wiki.openssl.org/index.php/List_of_SSL_OP_Flags

Web Application Firewall detected

This server is protected by an IPS (Intrusion Prevention System), IDS (Intrusion Detection System) or an WAF
(Web Application Firewall). Acunetix detected this by sending various malicious payloads and detecting
changes in the response code, headers and body.

Impact
You may receive incorrect/incomplete results when scanning a server protected by an IPS/IDS/WAF. Also, if
the WAF detects a number of attacks coming from the scanner, the IP address can be blocked a�er a few
attempts.

https://www.anorc.org/
Detected ASP.NET URLScan from the response body.

Request
GET /9664933 HTTP/1.1

Cookie: ASPSESSIONIDQEAQCTQR=KBNPCCPBPNGDAEEEIJFJEDLP; theme=1; Lang=fa

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip,deflate,br

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/92.0.4512.0 Safari/537.36

Host: www.anorc.org

Connection: Keep-alive

Recommendation

https://raccoon-attack.com/
https://raccoon-attack.com/RacoonAttack.pdf
https://weakdh.org/
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://wiki.openssl.org/index.php/List_of_SSL_OP_Flags

37

If possible, it's recommended to scan an internal (development) version of the web application where the
WAF is not active.

38

Coverage

 https://www.anorc.org

 assets

 css

 bootstrap-5

 bootstrap.min.css

 animate.min.css

 box.css

 datepicker.css

 fa-window.css

 Flickity.css

 glyphicon.css

 Hover.css

 menu-top.css

 normalize.css

 responsive.css

 site-all.css

 #fragments

 threshold

 font

 fontawesome-5.14.0

 webfonts

 fonts

 glyphicons

 js

 bootstrap.min.js

 core.js

 jquery.magnific-popup.min.js

 popper.min.js

 vanilla-tilt.min.js

 wow.js

 slider

 amazingslider

39

 images

 vendor

 css

 samples.css

 icon

 img

 js

 sf.js

 lightbox

 #fragments

 advanced

 help-content

 css

 fontello.css

 font

 js

 abstracttoolbarmodifier.js

 fulltoolbareditor.js

 toolbarmodifier.js

 toolbartextmodifier.js

 lib

 codemirror

 codemirror.css

 codemirror.js

 javascript.js

 neo.css

 show-hint.css

 show-hint.js

 v7.5

 froogaloop2.min.js

 index.html

 #fragments

 advanced

 help-content

40

 index.html

 ckeditor.js

 config.js

 CAPTCHA

 cap.js

 CAPTCHA_image.asp

 core

 slider

 js

 amazingslider

 amazingslider.min.js

 E�ect4.js

 social

 social-sticky.asp

 en

 pages

 55

 fa

 FormView

 4

 news2

 16

 17

 4

 6

 newsview

 101

 103

 104

 105

 106

 107

 108

 109

41

 110

 113

 114

 115

 116

 118

 119

 121

 122

 124

 126

 127

 129

 130

 131

 132

 134

 137

 139

 144

 146

 147

 149

 153

 154

 155

 156

 157

 158

 159

 160

 161

 162

 163

42

 164

 165

 166

 167

 170

 172

 174

 176

 177

 180

 182

 185

 187

 188

 190

 192

 194

 196

 200

 201

 202

 204

 205

 206

 207

 209

 211

 214

 216

 217

 220

 223

 229

 230

43

 231

 234

 237

 238

 239

 243

 244

 245

 246

 247

 248

 251

 255

 256

 257

 261

 262

 263

 264

 265

 266

 267

 269

 270

 274

 275

 276

 277

 36

 37

 4

 43

 44

 45

44

 46

 47

 48

 52

 54

 55

 56

 58

 59

 60

 63

 64

 65

 66

 68

 69

 70

 71

 74

 75

 76

 77

 78

 79

 80

 81

 85

 86

 88

 89

 90

 91

 92

 93

45

 94

 95

 96

 97

 98

 99

 pages

 1

 100

 105

 2

 28

 29

 30

 36

 40

 41

 42

 43

 48

 88

 89

 90

 94

 96

 97

 99

 Contact

 GalleryAlbum

 index.asp

 Inputs

GETGET p, search

 font

 IranSans

46

 v5

 style.css

 inc

 Ajax_functions.asp

 Inputs

POSTPOST p

POSTPOST , CommentID, ModuleID

 submit.asp

 Inputs

POSTPOST id, l, module, p

POSTPOST CAPTCHA_Postback, email, fname, securityCode, txtComment, website

 Shop

 Ajax_functionsShop.asp

 Inputs

POSTPOST p

POSTPOST , ProID, UserID

 thumbs

 lg

 md

 userfiles

 files

 images

 menue

 monasebat

 site

 9664933

 robots.txt

 sanadata

 Inputs

GETGET Login

 script.asp

 service-worker.js

 sitemap.xml

 style.css

47

